
RTAS 2021 Panel Discussion
May 21, 2021

Moderator: Nan Guan, The Hong Kong Polytechnic University
Panelists:
Shinpei Kato, The University of Tokyo; Tier IV, Inc.
Andrei Kholodnyi, Wind River Systems
Shaoshan Liu, PerceptIn
Jan Staschulat, Research Engineer, Robert Bosch GmbH
Robert Bosch GmbH Rich West, Boston University

---Introduction to the panel---
[Nan Guan]

The topic of panel discussion is RTOS for autonomous machines.

Just a few words of that background. Everybody knows and agrees autonomous
machines are very important, and there are many different kinds of autonomous
machines. If we want to extract some common futures, they are really smart machines
which can perceive the surrounding world and have the intelligence to decide and to
react correspondingly. I think, in the very near future we will live with all those
autonomous machines in our life.

Today, we want to discuss about the real-time operating system for autonomous
machines and by real-time operating systems, I mean the wide sense. Because when
people usually talk about RTOS, it could be the very thin real-time scheduling kernel.
Today we are talking about the real time runtime software infrastructure, including
different layers, the middleware and so on.

I am very happy to invite five experts in this area, and now I invite them to introduce
themselves.

--- Self-introduction of the panelists---

[Shinpei Kato]

It has been a while since I attended RTAS, which as almost 10 years ago. I am still doing
a lot of r&d in real time systems, but I am more interested in open source project today.
I am really happy to share my experience with the problem of real-time system and
scheduling in the real world.

[Andrei Kholodnyi]

My name is Andrei Kholodnyi. I am from Wind River Systems, and we produce real-time
operating system VxWorks. I am also a member of the ROS2 technical steering
committee and I lead also ROS2 real-time working group. I am deeply involved in real-
time operating systems and other technologies surrounded.

[Shaoshan Liu]

My name is Shaoshan Liu and from Perceptln. We focus on autonomous machines, to be
more specific, for intelligent transportation. My personal stand is that the age of
autonomous machines is upon us, but yet we don't have a very clear idea how to build
the software system and the hardware system for these autonomous machines. I am
really glad to have these panel to discuss the future directions of these fields.

[Jan Staschulat]

My name is Jan and I am working at Bosch in the area of robotics and autonomous
driving. My background is real-time computing and adapting these techniques to ROS2
and developing deterministic execution mechanisms for ROS2 on microcontrollers. My
main interest is determinism and real-time systems.

[Rich West]

I am Richard and I am actually a chief software architect for DRAKO MOTORS, as well as
a professor at Boston university. I am currently developing a system for next-generation
electric vehicles, where we're trying to consolidate all the electronic control unit
functionality of a traditional vehicle onto a centralized operating system.

--- Research challenge and opportunities for RTOS for autonomous machines---

[Nan Guan]

Today, the ultimate goal is we try to identify some research opportunities and
challenges on this topic. But I understand this may be a very big question, so it is difficult
to start. Let's try to start with a little bit of brainstorming style: people can just try to
give their opinions and all the panelists are welcome to comment on otherǎΩ opinions
and to discuss. Along the way, there will be some specific topics popping up, then we
will catch them and we will go deeper. I invite everybody to say something about what's
the unique research challenge and opportunities for RTOS for autonomous machines.

[Shinpei Kato]

I used to work on scheduling algorithms on Linux kernel implementation, which actually
leds me to start developing the platform for autonomous vehicles, and I made it open
source which today we call Autoware.

I started Autoware using ROS, because it was the most deployed open source runtime in
a compositional system. I realize that we didn't really have real-time capabilities in ROS,
and its original version also lacks in the capability of real time. Even I had a great
experience in real time systems community with a lot of useful technologies to ensure
safety or security of such autonomous machines, but first of all, it is very difficult to still
employ such useful technologies in real systems. For my interest, I know that we have so
many useful technologies from this community, so my goal is to employ those pieces of
useful technologies into real systems as much as possible.

What I am really interested in today is a graph analysis in real time aspect, because
today you can't build your system by yourself, so you would like to work with other
components. ROS or ROS2 are such platforms that allow you to develop your
components and plug them into other components which could be developed by other
companies or individuals. Now the system exactly looks like a direct acyclic graph. It is a
pity that a great experience in this community how to make such graph-based systems
to be real time capable, but today even I can't really design and implement a real system
with DAG real time scheduling. There are actually similar problems to me for other real
time technology.

My observation is still, it is quite difficult to employ useful technologies from this
community to implement in actual real system, I like to know, from other people, from
ROS community how you are identifying your core challenges in real systems in terms of
the technologies that developed from this community.

[Shaoshan Liu]

I have several observations, for the last few years, when we ship commercial products
autonomous machines and so on.

The first thing is that it seems to have a very deep processing pipeline unlike previous
computing we have encountered. In mobile computing, the computation pipeline is
much shorter. For mobile computing you are really running one foreground APP at one

time, as for robotic computing you have to optimize the whole graph, which the
previous speaker brought up that it is a DAG graph and every node has to be optimized
so that none of those nodes can become the bottleneck, otherwise, your system is
screwed. But on the scheduling side, we don't seem to have things to take care of that.
So how to deal with this challenge when people build their own ad hoc solution,
software and hardware, to make sure their whole system is meeting the deadline end-
to-end. We did that as well. We had a micro paper to describe our system which uses
FPGA for sensor processing, GPU for the heavy lifting, and CPU for planning and control.
But essentially, it is an ad hoc system, and it is really hard to transfer to other
autonomous machines.

We step back and try to summarize what is next to that. The first thing is that the so-
called real time system today, ROS itself is a middleware, it pretty much has no
influence on how we schedule things down there, has no heterogeneous computing
support, for example, to bridge two FPGA is very hard, and then to use the traditional
scheduling algorithms on a heterogeneous system is very hard.

So, the result is that we have to perform a lot of manual work to try to construct these
ad hoc solutions to map different computing onto different substrates, and it takes a
long time, a lot of iterations. Most of the companies today in this field, we don't have
google's resource, we don't have appleΩs resource to deal with this kind of hassles. So if
there were a very good real time system, the whole field will iterate much, much faster.

The second problem is a more recent problem that we have observed is that all these
machines are connected machines, so we have not only to deal with computation on
machine, we have to deal with communications across machines, and that kind of
support in software system is missing or not enough today.

To summarize, we need better scheduling support from the ROS level, what we call the
RTOS for robots. But today, ROS is a bit disconnected with the underlying real operating
system on scheduling. Second, we need much better support for mapping the workload
to heterogeneous hardware, such as domain specific architecture, or FPGA, or GPU,
while ROS was built on top of CPU today. Autonomous machines, when you try to think
of it, its abstraction is beautiful, for example, you have a function call to the perception,
you can make that a very high-level abstraction of software. But today we are going into
a lot of details to optimize the fine-grained stuff. But if the software layer can provide
more or higher levels of abstraction will make programming much easier.

[Andrei Kholodnyi]

As a real-time operating system manufacturer, I would only support what you have said.
In regards of autonomous machines, internet is moving from a human Internet to
machine-machine Internet where all these real-time computing probably will move to
the edge or a lot of computing will move to the edge. What would be also interesting is
in terms of time sensitive network, it would also move from this heterogeneous system
real time into some kind of distribute real time, it is also pretty interesting topics to
address for this community.

Besides that, since there will be more and more autonomous machines, I think all these
self-X properties, such as self-sensing, self-maintenance and so on, for the autonomous
machines would get more and more attraction. So, in this regard, probably what would
be also a very interesting area for the real time systems is some kind of self-optimization
in terms of real time properties, like better layers and determinism and some kind of
self-improvement scheduling.

This kind of stuff would be also very interesting to see what kind of research can people
bring into these areas. And if we touch RTOS for ROS2, I totally agree with previous
speakers that there is a lack of real time in ROS2. As the chief real time working group, I
just could admit this, and I think there is the effort in ROS2 community to work on this.

[Jan Staschulat]

I have two slides to describe some problems what we see here at Bosch.

This is the work we are working in real time working group for ROS2, and it was
presented last year, where the papers also available. What I want to highlight as a
problem or as a as an experiment that we did, we are looking at end-to-end latency,
which is very important in the robotics but also in autonomous driving. You have sense,
plan, act, typical control loops where sensor data comes in, and in this case, it is data
driven, so like in ROS2, every element is executed when the message is available. And
now the end-to-end latency from the very beginning to the end has been measured on a
Raspberry Pi. All executed on a single core, and we see the end-to-end latency is two to
three milliseconds, kind of.

And now we were interested, what happens if we add some node on this system, and
we have made this experiment on one core. We had the sense plan act loop, and then,
on the other three cores, we just have some additional listeners, so another planner or
something else will just listen to the messages.

And we were just interested what happens to the end-to-end latency of this safety
critical control loop. And this is the result. On the X axis, you see the number of
subscribers on the other cores. On the y axis, you see the end-to-end latency. You see

an increase of three orders of magnitude. Because you have changed nothing on your
single core, that these are the only processes running, and you have just added some
additional workload on the other cores. And this is what I want to highlight, we're at this
conference, we are looking at real time systems and scheduling, but putting it all
together is a big challenge.

And you might ask yourself what went wrong here. Of course, you have shared memory
and because you are sharing all the messages need to be passed from one core to the
others. That's why the safety critical part cannot access or does not get the access fast
enough. And the second thing is the communication stack in ROS2. We have not really
looked into details what was the real cause, just shared memory, or is it part of ROS2.

Similar to a paper yesterday, with virtual reality they looked into network stack and
optimize there. The message that I want to convey is: doing real time analysis based on
singer values of execution times it is not really practical anymore. you have to really look
at the big picture, and this basically fails when you integrate things.

I have been working for a long time in the worst-case execution time analysis
community and now I am on industrial side. I have to say that this assumption, when
you do scalability analysis that you first determine one value the worst-case execution
time of a task and then do a very advanced scheduling analysis or scheduling policy on
top of it, does not meet the current setup of systems anymore. You do have to look at
shared memory access time which you don't know how long it takes. Of course, you can
stay always inside of your theory and advanced this theory, but it does not address the
problems we have.

It is very difficult to apply these kind of scaling techniques to a multicore platform for
autonomous driving. What I am interested in is approaches that can handle
uncertainties, for example with fault models, and not so much about probabilistic ones,
because probabilistic modeling approaches always assume randomization, I think
randomization and determinism is not really a good mix.

Another way would be to control the interference between different cores, either in
terms of hardware, operating system or analytical models or analysis techniques. As the
final research challenge, I would see is the integration of CPU processing in cause effect
chains and the end-to-end analysis.

[Rich West]

To follow on from what Jan just said, I thought that was pretty interesting, you
mentioned several things that are you mentioned this idea of pipeline processing from
sensing to sensor data processing to activation, and we've also heard people talk about
things like ROS and ROS2 and the need for the underlying operating system beneath
that.

Now I have recently started working with a partner company Drako Motors, as the chief
software architect for that company. And we're building this vehicle management
system called Drive-alas, so I am going to tell you some of the things that I see from the
perspective of the actual operating system itself underneath all of these other higher
level abstractions like ROS and so forth.

So, first of all we're seeing a ground change in the hardware that traditionally has been
in the sphere of vehicle management systems. In the past we've had these very basic
electronic control units and now we're going to a much more complex hardware,
software a hybrid of CPUs, hardware accelerators, FPGAs, and interconnection
networks.

And I said here that we need one of the things I think is a very important thing is how do
we do this functional consolidation. How do we stop the growth of electronic control
units getting out of hand and actually consolidating the traditional functionality is
targeted at separate hardware on to actually a centralized platform. I will say more
about that in the moments.

And then obviously there's the trade-off between what how much you do processing on
EG a vehicle versus on the edge network in the vicinity of a vehicle. And then you've got
all your traditional challenges your mix criticality challenges you've got to manage your
vehicle, from the point of view of the user interface to the occupants of the vehicle, the
instrument cluster the in-vehicle Infotainment features and so forth.

Through to the more critical features that are timing sensitive, which relate to the
power train and control of the vehicle talk factoring Advanced Driver Assistance Systems
and so forth. And i've mentioned the usual safety, security predictability challenges size
weight and power, including battery usage, and then things such as IR, and I think IR, we
heard Andre mentioned this before about things like time sensitive networking thing

we're going to move away from traditional canbus networks in vehicles to higher
bandwidth networks, so let me just show you a couple of other slides.

If you look at a modern luxury vehicle you'll see anything from 50 to 150 electronic
control units in that vehicle. This market is growing enormously it is a 10s of billion
dollar markets. If you look at statistics as data they predict that by 2030, the cost of a
vehicle will be 50% based upon the electronics, implemented on that vehicle. So now
we're starting to see new challenges from a software perspective, how we manage that
hardware.

So I said here hardware and operating system evolution going back to traditional cars
that were not autonomous you'd have everything from eight to 32 bit microcontrollers
running at 10s to hundreds of megahertz with anything from one to potentially three
cores. These microcontrollers would all be part of separate electronic control units
distributed around the vehicle controlling everything from your chassis your body your
power train your Infotainment functionality. And, each ECU will be dedicated to a
separate function typically and the low power and low performance.

And so, in vehicles that we run today you'll have simple real time operating systems
you'll have OSEK operating systems FreeRTOS you might have Tresos operating systems.
But as we go towards more complex hardware marrying CPUs GPUs FPGAs and high
bandwidth sensor technologies. We're going to have to come up with new operating
system designs that are a hybrid of traditional real time operating system type features,
and more general purpose features that you'd find in systems such as Linux. And the
reason for this is simple, we can't just rewrite all those RTOS from scratch, it will take
just many, many years to do so. And the verification and certification challenges would
be prohibitive here, so we want to keep the art of small, but we want to integrate it with
a general purpose system.

And this is something that I am looking at working with my company now at Drako
Motors, we're trying to build a system that consolidates all these ECU functions a
software defined functions on a centralized platform. So I am going to stop there, but
that's really all I wanted to say at this point.

---5ƛǎŎǳǎǎƛƻƴ ŀǊƻǳƴŘ ά!ƴŘǊƻƛŘέ ŦƻǊ ŀǳǘƻƴƻƳƻǳǎ ƳŀŎƘƛƴŜǎ---

[Nan Guan]

The time goes so fast, so we are we just started, but we already it is already half hour.
So I get impression that this is really a complex problem, so in the statements, we have
mentioned everything, I hear a lot of keywords like heterogeneous, communication,
multicore, distributed, everything.

I would like to drive the following discussion a little bit to a specific question. You know,
we have a lot of researchers in real time community and for a lot of issues you just
mentioned, we have people work on those issues. But it is it is difficult to directly apply
the theoretical work or even a bit less theoretical work to practice, this is really the case.

So I wonder is there a possibility that many people can work on standard thing, for
example today, if you say I am working with the operating system for mobile phones, if
you do not work on android or you cannot work on ios, probably you still can work on
that our first year, you can create new things, but the impact would be not as large as
working on, for example, android directly.

My question is that, what's your opinion about will there be something like android for
autonomous machine, at least one thing that we can benefit. It is really meaningful to
do this platform specific research, so our research is not so fragmented. So what's your
opinion about this.

[Shinpei Kato]

I think the answer is definitely. Let me share some slides here.

This is exactly what my technical goal to make android for autonomous machines, so we
recently launched MIH, which is an EV open platform initiated by Foxconn. I believe this
is a way to the future of autonomous machine. We can actually open up not only
software, but also hardware components. The reason why android is actually really
deployed in the market is, yes android is open source, but the Community initiated by
Google, they clearly defined the reference design how android can be deployed in the
real hardware.

If we consider similar market, so this is a very interesting activity for my carrier today
actually so to build the same ecosystem as what android has a lot, but we can make it

for an electrical vehicles or market, so I believe that the answer is yes, and I believe that
it should look like this. Now the challenge is to build an ecosystem or Community so
that's the most challenging part actually is not a technical perspective. So for me, the
challenge is how we can make that community, so Linux is a Community android is a
Community, how we can make this as a Community, this is my current understanding to
the challenge in the real world to make and drive for autonomous machines, we need a
community.

[Rich West]

So let me just share something else, so we have a HotMobile paper on exactly this and
the company that I am working with has a group out in Finland that's basically been
building an instrument cluster and in-vehicle Infotainment system for the vehicle that
we're developing and we started out using android integrating android as a guest
operating system.

