
RTAS 2021 Panel Discussion
May 21, 2021

Moderator: Nan Guan, The Hong Kong Polytechnic University
Panelists:
Shinpei Kato, The University of Tokyo; Tier IV, Inc.
Andrei Kholodnyi, Wind River Systems
Shaoshan Liu, PerceptIn
Jan Staschulat, Research Engineer, Robert Bosch GmbH
Robert Bosch GmbH Rich West, Boston University

---Introduction to the panel---
[Nan Guan]

The topic of panel discussion is RTOS for autonomous machines.

Just a few words of that background. Everybody knows and agrees autonomous
machines are very important, and there are many different kinds of autonomous
machines. If we want to extract some common futures, they are really smart machines
which can perceive the surrounding world and have the intelligence to decide and to
react correspondingly. I think, in the very near future we will live with all those
autonomous machines in our life.

Today, we want to discuss about the real-time operating system for autonomous
machines and by real-time operating systems, I mean the wide sense. Because when
people usually talk about RTOS, it could be the very thin real-time scheduling kernel.
Today we are talking about the real time runtime software infrastructure, including
different layers, the middleware and so on.

I am very happy to invite five experts in this area, and now I invite them to introduce
themselves.

--- Self-introduction of the panelists---

[Shinpei Kato]

It has been a while since I attended RTAS, which as almost 10 years ago. I am still doing
a lot of r&d in real time systems, but I am more interested in open source project today.
I am really happy to share my experience with the problem of real-time system and
scheduling in the real world.

[Andrei Kholodnyi]

My name is Andrei Kholodnyi. I am from Wind River Systems, and we produce real-time
operating system VxWorks. I am also a member of the ROS2 technical steering
committee and I lead also ROS2 real-time working group. I am deeply involved in real-
time operating systems and other technologies surrounded.

[Shaoshan Liu]

My name is Shaoshan Liu and from Perceptln. We focus on autonomous machines, to be
more specific, for intelligent transportation. My personal stand is that the age of
autonomous machines is upon us, but yet we don't have a very clear idea how to build
the software system and the hardware system for these autonomous machines. I am
really glad to have these panel to discuss the future directions of these fields.

[Jan Staschulat]

My name is Jan and I am working at Bosch in the area of robotics and autonomous
driving. My background is real-time computing and adapting these techniques to ROS2
and developing deterministic execution mechanisms for ROS2 on microcontrollers. My
main interest is determinism and real-time systems.

[Rich West]

I am Richard and I am actually a chief software architect for DRAKO MOTORS, as well as
a professor at Boston university. I am currently developing a system for next-generation
electric vehicles, where we're trying to consolidate all the electronic control unit
functionality of a traditional vehicle onto a centralized operating system.

--- Research challenge and opportunities for RTOS for autonomous machines---

[Nan Guan]

Today, the ultimate goal is we try to identify some research opportunities and
challenges on this topic. But I understand this may be a very big question, so it is difficult
to start. Let's try to start with a little bit of brainstorming style: people can just try to
give their opinions and all the panelists are welcome to comment on others’ opinions
and to discuss. Along the way, there will be some specific topics popping up, then we
will catch them and we will go deeper. I invite everybody to say something about what's
the unique research challenge and opportunities for RTOS for autonomous machines.

[Shinpei Kato]

I used to work on scheduling algorithms on Linux kernel implementation, which actually
leds me to start developing the platform for autonomous vehicles, and I made it open
source which today we call Autoware.

I started Autoware using ROS, because it was the most deployed open source runtime in
a compositional system. I realize that we didn't really have real-time capabilities in ROS,
and its original version also lacks in the capability of real time. Even I had a great
experience in real time systems community with a lot of useful technologies to ensure
safety or security of such autonomous machines, but first of all, it is very difficult to still
employ such useful technologies in real systems. For my interest, I know that we have so
many useful technologies from this community, so my goal is to employ those pieces of
useful technologies into real systems as much as possible.

What I am really interested in today is a graph analysis in real time aspect, because
today you can't build your system by yourself, so you would like to work with other
components. ROS or ROS2 are such platforms that allow you to develop your
components and plug them into other components which could be developed by other
companies or individuals. Now the system exactly looks like a direct acyclic graph. It is a
pity that a great experience in this community how to make such graph-based systems
to be real time capable, but today even I can't really design and implement a real system
with DAG real time scheduling. There are actually similar problems to me for other real
time technology.

My observation is still, it is quite difficult to employ useful technologies from this
community to implement in actual real system, I like to know, from other people, from
ROS community how you are identifying your core challenges in real systems in terms of
the technologies that developed from this community.

[Shaoshan Liu]

I have several observations, for the last few years, when we ship commercial products
autonomous machines and so on.

The first thing is that it seems to have a very deep processing pipeline unlike previous
computing we have encountered. In mobile computing, the computation pipeline is
much shorter. For mobile computing you are really running one foreground APP at one

time, as for robotic computing you have to optimize the whole graph, which the
previous speaker brought up that it is a DAG graph and every node has to be optimized
so that none of those nodes can become the bottleneck, otherwise, your system is
screwed. But on the scheduling side, we don't seem to have things to take care of that.
So how to deal with this challenge when people build their own ad hoc solution,
software and hardware, to make sure their whole system is meeting the deadline end-
to-end. We did that as well. We had a micro paper to describe our system which uses
FPGA for sensor processing, GPU for the heavy lifting, and CPU for planning and control.
But essentially, it is an ad hoc system, and it is really hard to transfer to other
autonomous machines.

We step back and try to summarize what is next to that. The first thing is that the so-
called real time system today, ROS itself is a middleware, it pretty much has no
influence on how we schedule things down there, has no heterogeneous computing
support, for example, to bridge two FPGA is very hard, and then to use the traditional
scheduling algorithms on a heterogeneous system is very hard.

So, the result is that we have to perform a lot of manual work to try to construct these
ad hoc solutions to map different computing onto different substrates, and it takes a
long time, a lot of iterations. Most of the companies today in this field, we don't have
google's resource, we don't have apple’s resource to deal with this kind of hassles. So if
there were a very good real time system, the whole field will iterate much, much faster.

The second problem is a more recent problem that we have observed is that all these
machines are connected machines, so we have not only to deal with computation on
machine, we have to deal with communications across machines, and that kind of
support in software system is missing or not enough today.

To summarize, we need better scheduling support from the ROS level, what we call the
RTOS for robots. But today, ROS is a bit disconnected with the underlying real operating
system on scheduling. Second, we need much better support for mapping the workload
to heterogeneous hardware, such as domain specific architecture, or FPGA, or GPU,
while ROS was built on top of CPU today. Autonomous machines, when you try to think
of it, its abstraction is beautiful, for example, you have a function call to the perception,
you can make that a very high-level abstraction of software. But today we are going into
a lot of details to optimize the fine-grained stuff. But if the software layer can provide
more or higher levels of abstraction will make programming much easier.

[Andrei Kholodnyi]

As a real-time operating system manufacturer, I would only support what you have said.
In regards of autonomous machines, internet is moving from a human Internet to
machine-machine Internet where all these real-time computing probably will move to
the edge or a lot of computing will move to the edge. What would be also interesting is
in terms of time sensitive network, it would also move from this heterogeneous system
real time into some kind of distribute real time, it is also pretty interesting topics to
address for this community.

Besides that, since there will be more and more autonomous machines, I think all these
self-X properties, such as self-sensing, self-maintenance and so on, for the autonomous
machines would get more and more attraction. So, in this regard, probably what would
be also a very interesting area for the real time systems is some kind of self-optimization
in terms of real time properties, like better layers and determinism and some kind of
self-improvement scheduling.

This kind of stuff would be also very interesting to see what kind of research can people
bring into these areas. And if we touch RTOS for ROS2, I totally agree with previous
speakers that there is a lack of real time in ROS2. As the chief real time working group, I
just could admit this, and I think there is the effort in ROS2 community to work on this.

[Jan Staschulat]

I have two slides to describe some problems what we see here at Bosch.

This is the work we are working in real time working group for ROS2, and it was
presented last year, where the papers also available. What I want to highlight as a
problem or as a as an experiment that we did, we are looking at end-to-end latency,
which is very important in the robotics but also in autonomous driving. You have sense,
plan, act, typical control loops where sensor data comes in, and in this case, it is data
driven, so like in ROS2, every element is executed when the message is available. And
now the end-to-end latency from the very beginning to the end has been measured on a
Raspberry Pi. All executed on a single core, and we see the end-to-end latency is two to
three milliseconds, kind of.

And now we were interested, what happens if we add some node on this system, and
we have made this experiment on one core. We had the sense plan act loop, and then,
on the other three cores, we just have some additional listeners, so another planner or
something else will just listen to the messages.

And we were just interested what happens to the end-to-end latency of this safety
critical control loop. And this is the result. On the X axis, you see the number of
subscribers on the other cores. On the y axis, you see the end-to-end latency. You see

an increase of three orders of magnitude. Because you have changed nothing on your
single core, that these are the only processes running, and you have just added some
additional workload on the other cores. And this is what I want to highlight, we're at this
conference, we are looking at real time systems and scheduling, but putting it all
together is a big challenge.

And you might ask yourself what went wrong here. Of course, you have shared memory
and because you are sharing all the messages need to be passed from one core to the
others. That's why the safety critical part cannot access or does not get the access fast
enough. And the second thing is the communication stack in ROS2. We have not really
looked into details what was the real cause, just shared memory, or is it part of ROS2.

Similar to a paper yesterday, with virtual reality they looked into network stack and
optimize there. The message that I want to convey is: doing real time analysis based on
singer values of execution times it is not really practical anymore. you have to really look
at the big picture, and this basically fails when you integrate things.

I have been working for a long time in the worst-case execution time analysis
community and now I am on industrial side. I have to say that this assumption, when
you do scalability analysis that you first determine one value the worst-case execution
time of a task and then do a very advanced scheduling analysis or scheduling policy on
top of it, does not meet the current setup of systems anymore. You do have to look at
shared memory access time which you don't know how long it takes. Of course, you can
stay always inside of your theory and advanced this theory, but it does not address the
problems we have.

It is very difficult to apply these kind of scaling techniques to a multicore platform for
autonomous driving. What I am interested in is approaches that can handle
uncertainties, for example with fault models, and not so much about probabilistic ones,
because probabilistic modeling approaches always assume randomization, I think
randomization and determinism is not really a good mix.

Another way would be to control the interference between different cores, either in
terms of hardware, operating system or analytical models or analysis techniques. As the
final research challenge, I would see is the integration of CPU processing in cause effect
chains and the end-to-end analysis.

[Rich West]

To follow on from what Jan just said, I thought that was pretty interesting, you
mentioned several things that are you mentioned this idea of pipeline processing from
sensing to sensor data processing to activation, and we've also heard people talk about
things like ROS and ROS2 and the need for the underlying operating system beneath
that.

Now I have recently started working with a partner company Drako Motors, as the chief
software architect for that company. And we're building this vehicle management
system called Drive-alas, so I am going to tell you some of the things that I see from the
perspective of the actual operating system itself underneath all of these other higher
level abstractions like ROS and so forth.

So, first of all we're seeing a ground change in the hardware that traditionally has been
in the sphere of vehicle management systems. In the past we've had these very basic
electronic control units and now we're going to a much more complex hardware,
software a hybrid of CPUs, hardware accelerators, FPGAs, and interconnection
networks.

And I said here that we need one of the things I think is a very important thing is how do
we do this functional consolidation. How do we stop the growth of electronic control
units getting out of hand and actually consolidating the traditional functionality is
targeted at separate hardware on to actually a centralized platform. I will say more
about that in the moments.

And then obviously there's the trade-off between what how much you do processing on
EG a vehicle versus on the edge network in the vicinity of a vehicle. And then you've got
all your traditional challenges your mix criticality challenges you've got to manage your
vehicle, from the point of view of the user interface to the occupants of the vehicle, the
instrument cluster the in-vehicle Infotainment features and so forth.

Through to the more critical features that are timing sensitive, which relate to the
power train and control of the vehicle talk factoring Advanced Driver Assistance Systems
and so forth. And i've mentioned the usual safety, security predictability challenges size
weight and power, including battery usage, and then things such as IR, and I think IR, we
heard Andre mentioned this before about things like time sensitive networking thing

we're going to move away from traditional canbus networks in vehicles to higher
bandwidth networks, so let me just show you a couple of other slides.

If you look at a modern luxury vehicle you'll see anything from 50 to 150 electronic
control units in that vehicle. This market is growing enormously it is a 10s of billion
dollar markets. If you look at statistics as data they predict that by 2030, the cost of a
vehicle will be 50% based upon the electronics, implemented on that vehicle. So now
we're starting to see new challenges from a software perspective, how we manage that
hardware.

So I said here hardware and operating system evolution going back to traditional cars
that were not autonomous you'd have everything from eight to 32 bit microcontrollers
running at 10s to hundreds of megahertz with anything from one to potentially three
cores. These microcontrollers would all be part of separate electronic control units
distributed around the vehicle controlling everything from your chassis your body your
power train your Infotainment functionality. And, each ECU will be dedicated to a
separate function typically and the low power and low performance.

And so, in vehicles that we run today you'll have simple real time operating systems
you'll have OSEK operating systems FreeRTOS you might have Tresos operating systems.
But as we go towards more complex hardware marrying CPUs GPUs FPGAs and high
bandwidth sensor technologies. We're going to have to come up with new operating
system designs that are a hybrid of traditional real time operating system type features,
and more general purpose features that you'd find in systems such as Linux. And the
reason for this is simple, we can't just rewrite all those RTOS from scratch, it will take
just many, many years to do so. And the verification and certification challenges would
be prohibitive here, so we want to keep the art of small, but we want to integrate it with
a general purpose system.

And this is something that I am looking at working with my company now at Drako
Motors, we're trying to build a system that consolidates all these ECU functions a
software defined functions on a centralized platform. So I am going to stop there, but
that's really all I wanted to say at this point.

---Discussion around “Android” for autonomous machines---

[Nan Guan]

The time goes so fast, so we are we just started, but we already it is already half hour.
So I get impression that this is really a complex problem, so in the statements, we have
mentioned everything, I hear a lot of keywords like heterogeneous, communication,
multicore, distributed, everything.

I would like to drive the following discussion a little bit to a specific question. You know,
we have a lot of researchers in real time community and for a lot of issues you just
mentioned, we have people work on those issues. But it is it is difficult to directly apply
the theoretical work or even a bit less theoretical work to practice, this is really the case.

So I wonder is there a possibility that many people can work on standard thing, for
example today, if you say I am working with the operating system for mobile phones, if
you do not work on android or you cannot work on ios, probably you still can work on
that our first year, you can create new things, but the impact would be not as large as
working on, for example, android directly.

My question is that, what's your opinion about will there be something like android for
autonomous machine, at least one thing that we can benefit. It is really meaningful to
do this platform specific research, so our research is not so fragmented. So what's your
opinion about this.

[Shinpei Kato]

I think the answer is definitely. Let me share some slides here.

This is exactly what my technical goal to make android for autonomous machines, so we
recently launched MIH, which is an EV open platform initiated by Foxconn. I believe this
is a way to the future of autonomous machine. We can actually open up not only
software, but also hardware components. The reason why android is actually really
deployed in the market is, yes android is open source, but the Community initiated by
Google, they clearly defined the reference design how android can be deployed in the
real hardware.

If we consider similar market, so this is a very interesting activity for my carrier today
actually so to build the same ecosystem as what android has a lot, but we can make it

for an electrical vehicles or market, so I believe that the answer is yes, and I believe that
it should look like this. Now the challenge is to build an ecosystem or Community so
that's the most challenging part actually is not a technical perspective. So for me, the
challenge is how we can make that community, so Linux is a Community android is a
Community, how we can make this as a Community, this is my current understanding to
the challenge in the real world to make and drive for autonomous machines, we need a
community.

[Rich West]

So let me just share something else, so we have a HotMobile paper on exactly this and
the company that I am working with has a group out in Finland that's basically been
building an instrument cluster and in-vehicle Infotainment system for the vehicle that
we're developing and we started out using android integrating android as a guest
operating system.

In our vehicle management system, so here's an example of just a very, very simple
version, this is just a two core platform, but you can imagine many core platform and
we've actually got a many core incarnation of our system. So on the left here we've got
a sandbox petition hypervisor setup where you've got your real time operating system
talking to your critical devices, particularly the CAN bus interface. And it is doing all your
real time sensing and control functions. And, on the right hand side we've got a hand
and android stack which basically provides the user interface to the user.

Now you know Shinpei is right, I agree with him about trying to build an ecosystem
around android just like we're building around Linux and clearly it makes sense to
integrate android into let's say a vehicle.

To do all the traditional things that you would have on a smartphone music messaging
making phone calls exchanging emails and doing navigation. We've already seen the
Android auto and Apple CarPlay allow the integration of a smartphone into a vehicle
where you basically use the vehicles head unit it is display for displaying an interface to
the phone applications, but the applications are still running on the phone.

Where we need to go is, we need to go to the point where you can go beyond the
applications that you would have on the phone, and maybe use the android stack with it
is convenient software development kit to define an integrated interface to work with
core vehicle functions, such as your heating ventilation and air conditioning or through a
touchscreen or a voice activation feature to enable ADAS services, for example.

Now these, the question I have, though, is why do we need android to do this, we
started using android but we ended up scrapping it and we've gone with Linux plus qt to
build our interface.

And one of the reasons we ended up doing this is because android that very poor
functionality to support multiple headed display. If you want to support things like an
instrument cluster or read only instrument cluster with a touch screen in vehicle
interface to the side and android is very poor at doing that, but Linux is perfectly
capable of managing multiple screens at same time.

And the telling point here is, if you look at tesla, tesla doesn't even support android or
apple car play and they've gone and implemented their own user interface using Linux.

So right now I am not sure that android is really going to give you anything at the end of
the day, that's just my statement.

[Jan Staschulat]

Maybe I jump in when you're talking about an android having something similar like
android in like an automotive OS, I asked myself the question you know what are the
specific features of android that are beneficial for automotive operating system, so of
course it is open source and it is based on existing well-established technology like
Linux. But automotive, one question you can ask yourself in terms of reliability if you
have an open source and you're running a car with it that that runs basically your
control algorithms and all that stuff it is real time capable, and if that basically fails
who's going to be responsible for this.

A second thing, if a company would develop this what's kind of the business model
behind it, but I don't want to go into that kind of discussion because I guess here I mean
the audience here, I would say, I would rather focus on the technical feasibility.

And in my opinion, I agree that having a kind of android for automotive it is very
beneficial to have an easy integration and also to do easier development of new
features, but where I see the key difference is that while android is based on Linux and
way do scheduling for phone, if you want to do real time applications in a car, you do
not only need a real time operating system, and I would argue there's so many open
issues with this complex hardware, we have shared memory, you have GPUs and all
these things have not been addressed sufficiently by academic community, then you
cannot just make an operating system out of it.

That's why I would let's say invite or we need here definitely a closer collaboration
between academia and business and then product development here stronger
collaboration to get to address these open issues.

[Andrei Kholodnyi]

Okay, so let me probably continue.

You know, when I look at this question will be android and quotes rights for an
autonomous machines, I think android is, by definition, an mobile operating system and
the based on Linux kernel, and I think if you want to try some sense, so it exists already
and I mean it is ROS.

And this is there, I think, if we has a strong ecosystem, it has various flavors and it really
depends on the industry where you want to try, because if you look at it, for instance,
and this is actually approved by Android, Android is very successful in the mobile
devices, but if you go and try to apply this to car industry, it hits its limits, for instance,
like an automotive you don't have support for that for that for automotive buses, or for
multiple displays, because it was not designed for that.

For ROS, in different industries, there are different domain specifics. You can speak
about, for instance, after where was dedicated created based on ROS to address
automotive autonomous. There are other big communities where there is also specifics
like there is a ROS agriculture where people implement specific domain language more
or less, there is drawings, where you have a different like PX4 not ROS operating system.

There is also like it could be like a real time and non real time depends on what kind of
use cases you want to address. But I think ROS is a good platform to try real time in
various areas, and then, depending on the areas to find the real time application
examples where you can imply there are different requirements for different industries.

[Shaoshan Liu]

I think there will be an Android but far away, you don't have Linux or unix for robotic yet
you don't have the Intel arm for robotics yet. We don't even have a solid end-to-end
time model or generic time model for robotics yet, so I think in the next few years, we
should focus on building up those foundations before we push very hard for the android
route commercially.

Same thing happened in cell phone agents well there are different kinds of operating
system different kind of cell phones in the market for about 10-15 years, smartphone
market, and then Android came along, ios came along, and became a consolidated
market, but then that builds on the foundation that the hardware is ready, the basic
software already that we are still far from yet today.

So that's my take, I will spend more time, focusing on how to build the computer
architecture for different kinds of autonomous machines to build the basic like the unix
like basic operating system or RTOS for different types of autonomous machines yet, but
the general Android user interfacing operating system, I think we're not there yet, we're
still far from it.

[Nan Guan]

So we already see different opinions, so we don't have much time, but I want you guys
to not be nice to each other, just say your different opinions.

[Rich West]

First of all, I don't necessarily buy any of this ROS stuff, so I am going to completely you
know start by talking all of my panelists here. I think ROS is just a bunch of middleware
we've seen all this before, by the way we saw CORBA in the late 1990s with middleware
and the object management group developed Cobra and so forth now we've got ROS to
and so forth, but at the end of the day, until you build the underlying operating system
to have the real time requirements, you've got a problem.

And also just to talk about android at the end of the day, with android it is a user
interface environment really it basically builds on top of Linux to give you a convenient
user interface for certain applications that you might want to integrate into your
autonomous vehicle.

I am not convinced it is the right way, given my experience and we started out actually
playing with android I just wanna let you know that we actually started integrating it
into our system and backed away.

Anyway, i'll just start by that by sort of antagonizing my panelists with my concerns
about ROS and ROS2.

[Jan Staschulat]

I have been working in the scope of micro ROS basically putting ROS2 on
microcontrollers and addressing lots of real time issues, and actually we are working in
the real time working group very hard to connect basically the two worlds, I mean ROS2
and real time operating system. And the idea is to have an interface in ROS2 abstraction
that allows you to access all features of the real time operating system.

So it allows you to at user level to use all the fancy algorithms, fixed-priority preemptive
scheduling or reservation based scheduling and so forth, and as easy to use on ROS.

Because we see also in Bosch that we cannot develop everything from scratch, again we
see community around ROS2 with all the simulation tools and environments and every

company has so many drivers available for all of that. Having a similar community for
automotive makes absolutely sense. I also agree ROS2 is not there yet, but we're
working on this.

[Rich West]

So, Jan, I have a few questions for you as an employee of Bosch. I think Germany is a big
influence over certain standards in the suddenly the automotive world and the
embedded world at large. But when I look at companies like tesla, tesla very disruptive
and they've sort of thrown the rulebook out of the window and they're coming up with
their own designs. Isn't there something for an opportunity to now rethink how we do
everything from scratch, because we're taking on a new challenge now, particularly with
autonomous vehicles.

And one of the things I do want to say is that I really do appreciate with what you've
been saying, and that is you've been talking about pipeline processing. The sensing
through to the actuation, I think we need a framework which can do real time end-to-
end pipeline processing. If we can make that work in ROS, great. But that to me is the
grand challenge right now.

[Jan Staschulat]

So I cannot say what we're working currently on but I recently that service oriented data
driven activation scheme what you're saying, you have sense plan act, you have graphs
that you're working on, and these kind of concepts are as independent of what kind of
middleware you're using to express these kind of exclusion patterns, so to say.

ROS2 is well established in robotics and in automotive autonomous driving, you have a
very similar application design or software architecture.

So that's the kind of a natural way to start looking for these kinds of concepts.

Okay that's all I can say now.

[Andrei Kholodnyi]

Because you are researchers and you want to go from some kind of you know, a
paperwork and try it out, I think it is also pretty important to consider that Linux like
ROS. There are a lot of developers, who knows Linux and doesn't know any other stuff
like any other, you know operating system, and this is exactly what happens with unix
and the BSD and all this stuff, and this would happen also to real time operating
systems.

I think the majority will be then real time Linux, and if you consider your research, you
also need to keep this in mind to try to work with the open source community on that
and I think the times where proprietary operating system, so they still have their niche
and the good reason to be there, but this wealth of community is really behind probably
real-time Linux. So, for other applications like it could be that you would use FreeRTOS
safer. It could be but, I think the 99% or 90% you'll be real time Linux.

[Rich West]

I have a question about that, I mean you are in Wind River, vxworks, Wind River
hypervisor, there's other competing technologies, such as the QNX hypervisor, etc.,
there are lots of different real time operating systems out there and hypervisor
technologies.

So there's an opportunity to integrate traditional general purpose operating systems
such a Linux with custom RTOS on the side, we don't need to take Linux and make it
only real time on its own, we can augment it with other.

[Andrei Kholodnyi]

That's right, I mean this one of the possibilities and I would like to mention that I mean
there are different types of RTOSes, so there is a micro-kernel versus monolithic. I think
there is also a good research area that everything probably will move into some kind of
uni-kernel design or uni-kernel real time operating systems and then you would have
probably non real time environment computation environment, and within this
computation environment, you would have islands of real time computation workloads
which would run. It would be not like everything would be real time is not realistic,
keeping in mind what we have discussed, very complicated heterogeneous systems with
fpga gpus everything you know, like on one soc it is completely unrealistic to make a
real time operating system in the aggregate of this.

It will be like computation islands, of course, but what I am trying to say if people would
go in and compare I would use real time Linux instead of proprietary real time operating
system if there is no good reason of using real time operating system proprietary
operating system, people would go and use real time Linux instead, right so. And there
are good reasons for using proprietary operating systems, real time operating systems, I
could say as a manufacturer of such a operating system and our system now on Mars
running on Mars, as well as also Linux but you need to keep in mind that you're so what
was the first operating system you would go and try would be Linux.

[Shinpei Kato]

I actually have some proposals to the community.

Let me be a bit theoretical here. Taking the conversations from today's panel discussion
I really enjoy so we show that, yes, the computing platform is heterogeneous and the
task model process set look like a graph.

Now we have to solve the problem of many competing resource management, but, for
example, scheduling. I believe that most of people from this community is very good at
solving, for example, if you look at the system as a graph.

If somebody say hey do you know how to derive the upper bound on the latency
between two nodes highlighted by yellow. I believe that this Community has some
answer.

I am running open source community, which is called Autoware Foundation, which is
built on top of ROS2, which will be actually used for an MIH open platform. We all have
questions about how to derive such latency issues or schedulability issues, so if some of
you are interested in contributing to the open source community by solving such
problems, I am really happy to coordinate the working group at Autoware foundation,
probably as well as ROS committee. I actually used to be, also at a ROS Steering
Committee I just stepped down because I wanted to make room for Sony.

I want to organize a working group, where students or researchers can join to give their
ideas about how to solve some problems which will be very, very useful for the open
source community, because they actually lack theoretical background. They are very
good at engineering technology, but sometimes we don't have the specific domains
theoretical solution. Just want to let you know I run open source community, so if you're
interested in, you can just come around, there are many working groups which for free,
you can join and very soon we're going to launch a new working group, which is a real
time for automotive autonomous vehicles.

If some of you are interested in contributing to open source community I am really
happy to talk to you guys probably as an extension to this panel.

I want to organize a working group a foundation for real time issues, so if some of you
are interested in contributing to those Open Source ecosystem, you are very
encouraged. thanks.

